

Alabama Statewide Math Contest - Round 4

Division Two

University of Alabama Birmingham

April 6, 2024

Scoring

Scoring

0:00 - 0:30 10 points

0:31 - 1:00 8 points

1:01 - 1:30 6 points

1:31 - 2:00 4 points

If the first person to answer is correct, they receive
2 Bonus Points.

Rules

Rules

1. Answers must be in answer box provided to be counted. Units such as cm, in, etc. are **not** necessary.
2. Fractions must be reduced. Improper fractions are acceptable.
3. The numbers π and e must be left as such.
4. Complex numbers must be put into $a + bi$ form.

Rules

Rules

5. Answers with radicals must be simplified. Denominators must be rationalized.
6. Exponents should be positive.
7. Answers involving trigonometric functions should be simplified as much as possible.
8. $\log(x)$ means $\log_{10}(x)$ and $\ln(x)$ means $\log_e(x)$.
9. The time limit for **all** problems is 2 minutes.

Sample Problem # 1

Sample Problem

RESET

:

Solve for x in the equation

$$x^2 - 6x - 3 = 0$$

Sample Problem

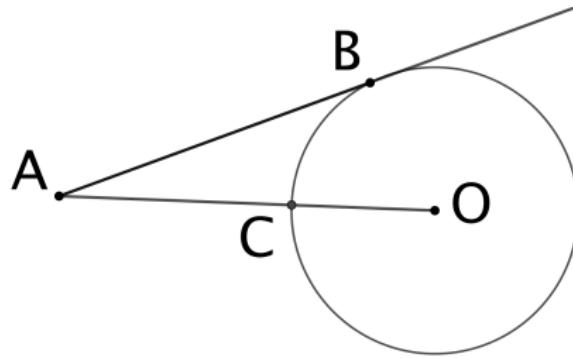
Answer:

Sample Problem

Answer: $3 + 2\sqrt{3}$ and $3 - 2\sqrt{3}$.

Round 4

Geometry


Geometry Question # 1

Geometry Question # 1

RESET

:

In the figure, points B and C lie on the circle centered at O such that C is on \overleftrightarrow{AO} and \overleftrightarrow{AB} is tangent to the circle. If $AB = 3\sqrt{5}$ and $AC = 5$, what is the radius of the circle?

Geometry Question # 1

Answer:

Geometry Question # 1

Answer: 2

Geometry Question # 2

Geometry Question # 2

RESET

:

A right circular cylinder and a sphere of the same radius both have a surface area of 98π . What is the height of the cylinder?

Geometry Question # 2

Answer:

Geometry Question # 2

Answer: $\frac{7\sqrt{2}}{2}$

Round 4

Algebra II

Algebra II Question # 3

Algebra II Question # 3

RESET

:

The quadratic function $f(x) = ax^2 + 5x + c$ has a maximum value of $y = 7$ at $x = 4$. What is the product ac ?

Algebra II Question # 3

Answer:

Algebra II Question # 3

Answer: $\frac{15}{8}$

Algebra II Question # 4

Algebra II Question # 4

RESET

:

What is the value of the product $i \cdot i^2 \cdots i^{10}$?

Algebra II Question # 4

Answer:

Algebra II Question # 4

Answer: $-i$

Round 4

Comprehensive Part 1

Comprehensive Part 1

Question # 5

Comprehensive Part 1 Question # 5

RESET

:

Find the solution x to the equation

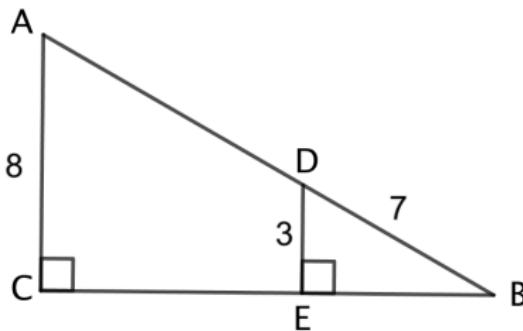
$$\ln(2x - 3) + \ln(x + 4) = \ln(2x^2 + 11)$$

Comprehensive Part 1 Question # 5

Answer:

Comprehensive Part 1 Question # 5

Answer: $\frac{23}{5}$


Comprehensive Part 1

Question # 6

Comprehensive Part 1 Question # 6

RESET

In the figure, points D and E lie on segments \overline{AB} and \overline{BC} respectively, with $\angle ACB$ and $\angle DEB$ both right angles. If $AC = 8$, $DE = 3$ and $BD = 7$, find $\sin(\angle BAC)$.

Comprehensive Part 1 Question # 6

Answer:

Comprehensive Part 1 Question # 6

Answer: $\frac{2\sqrt{10}}{7}$

Round 4

Comprehensive Part 2

Comprehensive Part 2

Question # 7

Comprehensive Part 2 Question # 7

RESET

:

What is the (2,3) entry in the matrix product below?

$$\begin{bmatrix} 5 & 8 \\ -9 & 1 \\ 6 & 7 \end{bmatrix} \begin{bmatrix} 5 & 0 & 8 & -2 \\ 4 & 4 & -3 & 6 \end{bmatrix}$$

Comprehensive Part 2 Question # 7

Answer:

Comprehensive Part 2 Question # 7

Answer: -75

Comprehensive Part 2

Question # 8

Comprehensive Part 2 Question # 8

RESET

:

What is the smallest value of x that is divisible by the numbers 1 through 8?

Comprehensive Part 2 Question # 8

Answer:

Comprehensive Part 2 Question # 8

Answer: 840

Round 4

Team

Team Question # 9

Team Question # 9

RESET

:

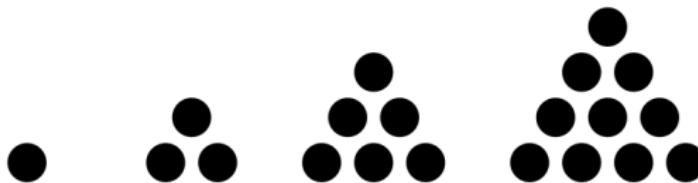
The vertical asymptote of $f(x) = \frac{-3x^2 + 2}{x - 1}$ crosses the slant asymptote of $f(x)$ at point (a, b) . What is b ?

Team Question # 9

Answer:

Team Question # 9

Answer: -6


Team Question # 10

Team Question # 10

RESET

:

A triangular number counts objects that can be arranged in an equilateral triangle. The first four triangular numbers are 1, 3, 6, and 10 as pictured below:

What is the 15th triangular number?

Team Question # 10

Answer:

Team Question # 10

Answer: 120

End of Round 4