

Alabama Statewide Math Contest - Round 2

Division Two

University of North Alabama

April 9, 2022

Scoring

Scoring

0:00 - 0:30 10 points

0:31 - 1:00 8 points

1:01 - 1:30 6 points

1:31 - 2:00 4 points

If the first person to answer is correct, they receive
2 Bonus Points.

Rules

Rules

1. Answers must be in answer box provided to be counted. Units such as cm, in, etc. are **not** necessary.
2. Fractions must be reduced. Improper fractions are acceptable.
3. The numbers π and e must be left as such.
4. Complex numbers must be put into $a + bi$ form.

Rules

Rules

5. Answers with radicals must be simplified. Denominators must be rationalized.
6. Exponents should be positive.
7. Answers involving trigonometric functions should be simplified as much as possible.
8. $\log(x)$ means $\log_{10}(x)$ and $\ln(x)$ means $\log_e(x)$.
9. The time limit for **all** problems is 2 minutes.

Round 2

Geometry

Geometry Question # 1

Geometry Question # 1

RESET

:

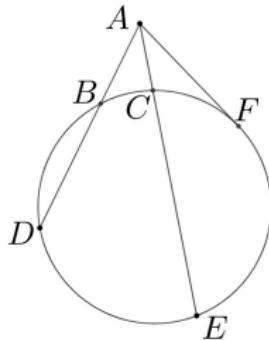
Let $\triangle ABC$ and $\triangle DEF$ be two triangles, with $\angle C$ and $\angle F$ both right angles, $\angle A \cong \angle E$ and $\angle B \cong \angle D$. If $AC = 3$, $DF = 4$, and $EF = 6$, find AB .

Geometry Question # 1

Answer:

Geometry Question # 1

Answer: $\sqrt{13}$


Geometry Question # 2

Geometry Question # 2

RESET

:

Let points B , C , D , E , F be on the circle as shown, and A be an external point such that B is on \overline{AD} , C is on \overline{AE} , and \overline{AF} is tangent to the circle at F . If $AB = 3$, $CE = 10$, and $AD = AE - 4$, find AF .

Geometry Question # 2

Answer:

Geometry Question # 2

Answer: $2\sqrt{6}$

Round 2

Algebra II

Algebra II Question # 3

Algebra II Question # 3

RESET

:

Find all solutions to the equation $|x + 2| = |x^2 - 4|$.

Algebra II Question # 3

Answer:

Algebra II Question # 3

Answer: $-2, 1, 3$

Algebra II Question # 4

Algebra II Question # 4

RESET

:

The sum of two numbers is 100. Their difference is 19. Find the smaller number.

Algebra II Question # 4

Answer:

Algebra II Question # 4

Answer: $\frac{81}{2}$

Round 2

Comprehensive Part 1

Comprehensive Part 1

Question # 5

Comprehensive Part 1 Question # 5

RESET

:

If $\sin x = \frac{3}{5}$, where $0 \leq x \leq \frac{\pi}{2}$, what is $\sin(2x)$?

Comprehensive Part 1 Question # 5

Answer:

Comprehensive Part 1 Question # 5

Answer: $\frac{24}{25}$

Comprehensive Part 1

Question # 6

Comprehensive Part 1 Question # 6

RESET

:

Find all solutions to $(x + 2)^2 = (2x - 3)^2$.

Comprehensive Part 1 Question # 6

Answer:

Comprehensive Part 1 Question # 6

Answer: $\frac{1}{3}$ and 5

Round 2

Comprehensive Part 2

Comprehensive Part 2

Question # 7

Comprehensive Part 2 Question # 7

RESET

:

If $4^x = 8^{2x-1}$, find x .

Comprehensive Part 2 Question # 7

Answer:

Comprehensive Part 2 Question # 7

Answer: $\frac{3}{4}$

Comprehensive Part 2

Question # 8

Comprehensive Part 2 Question # 8

RESET

:

How many distinct arrangements are there of the following shapes?

Comprehensive Part 2 Question # 8

Answer:

Comprehensive Part 2 Question # 8

Answer: 20

Round 2

Team

Team Question # 9

Team Question # 9

RESET

:

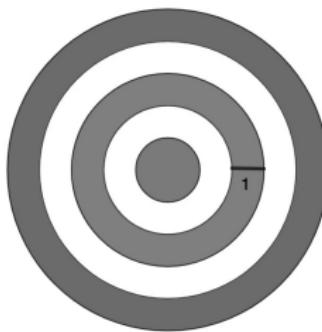
The equation $x^3 - 12x^2 + 44x - 48 = 0$ has its three roots in arithmetic progression. What is the median of the three roots?

Team Question # 9

Answer:

Team Question # 9

Answer: 4


Team Question # 10

Team Question # 10

RESET

:

A circle of radius 1 is surrounded by concentric circles, with each ring (both shaded and unshaded) being 1 unit in width, as shown in the figure. Find the total area of the shaded regions.

Team Question # 10

Answer:

Team Question # 10

Answer: 15π

End of Round 2