

Alabama Statewide Math Contest - Round 4

Division Two

University of North Alabama

April 9, 2022

Scoring

Scoring

0:00 - 0:30 10 points

0:31 - 1:00 8 points

1:01 - 1:30 6 points

1:31 - 2:00 4 points

If the first person to answer is correct, they receive
2 Bonus Points.

Rules

Rules

1. Answers must be in answer box provided to be counted. Units such as cm, in, etc. are **not** necessary.
2. Fractions must be reduced. Improper fractions are acceptable.
3. The numbers π and e must be left as such.
4. Complex numbers must be put into $a + bi$ form.

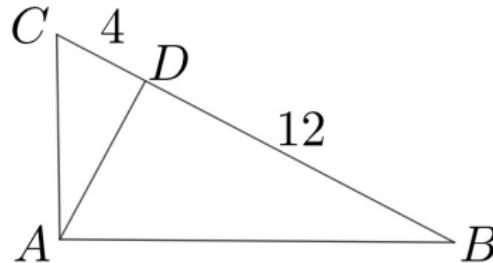
Rules

Rules

5. Answers with radicals must be simplified. Denominators must be rationalized.
6. Exponents should be positive.
7. Answers involving trigonometric functions should be simplified as much as possible.
8. $\log(x)$ means $\log_{10}(x)$ and $\ln(x)$ means $\log_e(x)$.
9. The time limit for **all** problems is 2 minutes.

Round 4

Geometry


Geometry Question # 1

Geometry Question # 1

RESET

:

Given $\triangle ABC$ with $m\angle BAC = 90^\circ$, $\overline{AD} \perp \overline{BC}$, $BD = 12$, and $CD = 4$, find AD .

Geometry Question # 1

Answer:

Geometry Question # 1

Answer: $4\sqrt{3}$

Geometry Question # 2

Geometry Question # 2

RESET

:

Let A , B , C be points on a circle such that BC is a diameter, and $AB = AC = 4$. Find the area of the circle.

Geometry Question # 2

Answer:

Geometry Question # 2

Answer: 8π

Round 4

Algebra II

Algebra II Question # 3

Algebra II Question # 3

RESET

:

Given that 1 is a root of $f(x) = 2x^3 + x^2 - 5x + 2$, find the positive difference of the other two roots.

Algebra II Question # 3

Answer:

Algebra II Question # 3

Answer: $\frac{5}{2}$

Algebra II Question # 4

Algebra II Question # 4

RESET

:

How many vertical asymptotes does the graph of

$$f(x) = \frac{4-x}{2x^2 - 7x - 4}$$

have?

Algebra II Question # 4

Answer:

Algebra II Question # 4

Answer: 1

Round 4

Comprehensive Part 1

Comprehensive Part 1

Question # 5

Comprehensive Part 1 Question # 5

RESET

:

A box contains 80 blue, 24 white, and an unknown number of red marbles. If the probability of drawing a red marble is 0.2, how many red marbles are in the box?

Comprehensive Part 1 Question # 5

Answer:

Comprehensive Part 1 Question # 5

Answer: 26

Comprehensive Part 1

Question # 6

Comprehensive Part 1 Question # 6

RESET

:

Find the distance between $2 + 3\sqrt{2}i$ and $-1 + \sqrt{2}i$ in the complex plane.

Comprehensive Part 1 Question # 6

Answer:

Comprehensive Part 1 Question # 6

Answer: $\sqrt{17}$

Round 4

Comprehensive Part 2

Comprehensive Part 2

Question # 7

Comprehensive Part 2 Question # 7

RESET

:

Find x_{50} , the 50th term of the arithmetic sequence that begins

$$x_1 = 5, x_2 = 9, x_3 = 13, \dots$$

Comprehensive Part 2 Question # 7

Answer:

Comprehensive Part 2 Question # 7

Answer: 201

Comprehensive Part 2

Question # 8

Comprehensive Part 2 Question # 8

RESET

:

Find the minimum value of the function $f(x) = 8x^2 + 4x + 5$.

Comprehensive Part 2 Question # 8

Answer:

Comprehensive Part 2 Question # 8

Answer: $\frac{9}{2}$

Round 4

Team

Team Question # 9

Team Question # 9

RESET

:

For how many real number values on the interval $[-3, 0]$ is the function $f(x) = 2 \tan x + \frac{x+5}{x^2 - 7}$ undefined?

Team Question # 9

Answer:

Team Question # 9

Answer: 2

Team Question # 10

Team Question # 10

RESET

:

A right square pyramid with a base of side length 8 has a height of 6. What is the surface area of this pyramid?

Team Question # 10

Answer:

Team Question # 10

Answer: $64 + 32\sqrt{13}$

End of Round 4