

Alabama Statewide Math Contest - Round 2

Division Two

University of North Alabama

April 11, 2015

Scoring

Scoring

0:00 - 0:30 10 points

0:31 - 1:00 8 points

1:01 - 1:30 6 points

1:31 - 2:00 4 points

If the first person to answer is correct, they receive
2 Bonus Points.

Rules

Rules

1. Answers with radicals must be simplified. Denominators must such as cm^2 , in, etc. are **not** necessary.
2. Fractions must be reduced and left as rational numbers.
3. Exponents should be positive.
4. Improper fractions are acceptable.
5. Answers involving trigonometric functions should be simplified
6. The numbers π and e must be left as such.
7. Complex numbers must be put into $a+bi$ form.
8. $\log(x)$ means $\log_{10}(x)$ and $\ln(x)$ means $\log_e(x)$.
9. The time limit for **all** problems is 2 minutes.

Sample Problem # 1

Sample Problem

RESET :

Solve for x in the equation

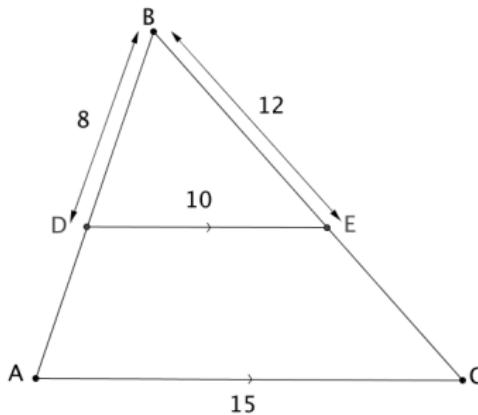
$$x^2 - 6x - 3 = 0$$

Sample Problem

Answer: $3 + 2\sqrt{3}$, and $3 - 2\sqrt{3}$.

Round 1

Geometry


Geometry Question # 1

Geometry Question # 1

RESET

:

In the following figure, \overleftrightarrow{DE} is parallel to \overleftrightarrow{AC} , $DB = 8$, $BE = 12$, $DE = 10$ and $AC = 15$. Find $AD + EC$.

Geometry Question # 1

Answer: 10

Geometry Question # 2

Geometry Question # 2

RESET :

A regular polygon has interior angles of measure 168° . How many sides does the polygon have?

Geometry Question # 2

Answer: 30

Round 1

Algebra II & Trig

Algebra II & Trig Question # 3

Algebra II & Trig Question # 3

RESET

:

Determine the positive integer n that satisfies the equation

$$\frac{1}{2^{10}} + \frac{1}{2^9} + \cdots + \frac{1}{2^5} = \frac{n}{2^{10}}.$$

Algebra II & Trig Question # 3

Answer: 63

Algebra II & Trig Question # 4

Algebra II & Trig Question # 4

RESET :

If $z = 3 + 4i$, find

$$2z - (\bar{z})^2$$

where \bar{z} is the complex conjugate of z .

Round 1: Algebra II & Trig Question # 4

Answer: $13 + 32i$

Round 1

Comprehensive Part 1

Comprehensive Part 1

Question # 5

Comprehensive Part 1 Question # 5

RESET :

Solve $\log_4(8 - x) - \log_4(2 - x) = \log_4 3$.

Comprehensive Part 1 Question # 5

Answer: -1

Comprehensive Part 1

Question # 6

Comprehensive Part 1 Question # 6

RESET :

Define an operation \triangle as $a\triangle b = a^2 + b^3$. What is the value of $(2\triangle 0)\triangle(1\triangle 1)$?

Comprehensive Part 1 Question # 6

Answer: 24

Round 1

Comprehensive Part 2

Comprehensive Part 2

Question # 7

Comprehensive Part 2 Question # 7

RESET :

What is the probability that a randomly chosen positive factor of 60 is less than 14?

Comprehensive Part 2 Question # 7

Answer: $\frac{2}{3}$

Comprehensive Part 2

Question # 8

Comprehensive Part 2 Question # 8

RESET : :

The area of a rectangle is 24 square feet. The length of the rectangle is one foot less than three times the width. Find the perimeter of the rectangle.

Comprehensive Part 2 Question # 8

Answer: 22

Round 1

Team

Team Question # 9

Team Question # 9

RESET :

A restaurant offers five main dishes, six side dishes and three desserts. Determine the number of different meals consisting of a main dish, two different side dishes, and a dessert a person can order.

Team Question # 9

Answer: 225

Team Question # 10

Team Question # 10

RESET : :

Find the solution to the equation

$$\cos^2 \theta + 2 \cos \theta + 1 = 0$$

on $[0, 2\pi)$.

Team Question # 10

Answer: π

End of Round 2