

The 38th
Annual

ALABAMA
STATEWIDE MATHEMATICS CONTEST

First Round: February 23, 2019 at Regional Testing Centers
Second Round: April 6, 2019 at The University of Alabama at Birmingham

ALGEBRA II WITH TRIGONOMETRY EXAM

Construction of this test directed
by

Miranda Bowie and Ashley Johnson, The University of North Alabama

INSTRUCTIONS

This test consists of 50 multiple choice questions. The questions have not been arranged in order of difficulty. For each question, choose the best of the five answer choices labeled A, B, C, D and E.

The test will be scored as follows: 5 points for each correct answer, 1 point for each question left unanswered and 0 points for each wrong answer. (Thus a “perfect paper” with all questions answered correctly earns a score of 250, a blank paper earns a score of 50, and a paper with all questions answered incorrectly earns a score of 0.)

Random guessing will not, on average, either increase or decrease your score. However, if you can eliminate one or more of the answer choices as wrong, then it is to your advantage to guess among the remaining choices.

- All variables and constants, except those indicated otherwise, represent real numbers.
- $\log(x)$ means $\log_{10}(x)$ and $\ln(x)$ means $\log_e(x)$.
- Diagrams are not necessarily to scale.

We use the following geometric notation:

- If A and B are points, then:
 - \overline{AB} is the segment between A and B
 - \overleftrightarrow{AB} is the line containing A and B
 - \overrightarrow{AB} is the ray from A through B
 - AB is the distance between A and B
- If A is an angle, then $m\angle A$ is the measure of angle A in degrees.
- If A and B are points on a circle, then \widehat{AB} is the arc between A and B .

- If A and B are points on a circle, then $m\widehat{AB}$ is the measure of \widehat{AB} in degrees.
- If $\overline{AB} \cong \overline{CD}$, then \overline{AB} and \overline{CD} are congruent.
- If $\triangle ABC \cong \triangle DEF$, then $\triangle ABC$ and $\triangle DEF$ are congruent.
- If $\triangle ABC \sim \triangle DEF$, then $\triangle ABC$ and $\triangle DEF$ are similar.
- If ℓ, m are two lines, then $\ell \perp m$ means ℓ and m are perpendicular.

Why Major in Mathematics?

What sorts of jobs can I get with a mathematics degree? Examples of occupational opportunities available to math majors:

- Market Research Analyst
- Cryptanalyst
- Mathematician
- Air Traffic Controller
- Professor
- Meteorologist
- Climate Analyst
- Pollster
- Medical Doctor
- Estimator
- Population Ecologist
- Lawyer
- Research Scientist
- Operations Research
- Actuary
- Computer Programmer
- Data Mining
- Statistician

Where can I work? What sorts of companies hire mathematicians? Well just to name a few...

- **U.S. Government Agencies** such as the National Center for Computing Sciences, the National Institute of Standards and Technology (NIST), the National Security Agency (NSA), and the U.S. Department of Energy.
- **Government labs and research offices** such as Air Force Office of Scientific Research, Los Alamos National Laboratory, and Sandia National Laboratory.
- **Engineering research organizations** such as AT&T Laboratories - Research, Exxon Research and Engineering, and IBM Research.
- **Computer information and software firms** such as Adobe, Google, Mentor Graphics, Microsoft, and Yahoo Research.
- **Electronics and computer manufacturers** such as Alcatel-Lucent, Hewlett-Packard, Honeywell, Philips Research, and SGI.
- **Aerospace and transportation equipment manufacturers** such as Boeing, Ford, General Motors, and Lockheed Martin.
- **Transportation service providers** such as FedEx Corporation and United Parcel Service (UPS).
- **Financial service and investment management firms** such as Citibank, Morgan Stanley, and Prudential.

A Mathematics Major isn't just for those wanting to be Mathematicians!

- The top scoring major on the Law School Entrance Exam (LSAT) is Mathematics (Source: Journal of Economic Education)
- Mathematics is also a top 5 scoring major on the Medical School Entrance Exam (MCAT) (Source: American Institute of Physics)

Study in the field of mathematics offers an education with an emphasis on careful problem solving, precision of thought and expression, and the mathematical skills needed for work in many other areas. Many important problems in government, private industry, and health and environmental fields require mathematical techniques for their solutions. The study of mathematics provides specific analytical and quantitative tools, as well as general problem-solving skills, for dealing with these problems.

1. A local movie theater sells a small popcorn for \$4, a medium for \$6, and a large for \$8. Last year, Miranda bought a total of 14 containers of popcorn, costing a total of \$78. If she bought two fewer smalls than mediums and larges combined, how many containers of large popcorn did she buy?

(A) (B) 4 (C) (D) 6 (E) None of these

2. The equation $x^{1/3} - 12x^{1/6} = -32$ has two solutions a and b with $a > b$. Find $\frac{a}{b}$.

(A) 2 (B) (C) (D) 4096 (E) None of these

3. On the planet Akhaten, fifteen yeks make up one kolt, seven zorbs make up one yek, and twenty one waaps make up four kolts. How many zorbs are in a waap?

(A) 5 (B) (C) 41 (D) 180 (E) None of these

4. For which value of a below is $x - a$ a factor of $3x^3 - 5x^2 - x + 7$?

(A) -5 (B) (C) 1 (D) 3 (E) None of these

5. The graph of a particular polynomial has end behavior that falls left and rises right, touches the x -axis at $x = -2$, and crosses the x -axis at $x = 4$. Which of the following could be the leading term?

(A) x^2 (B) $-4x^3$ (C) $-3x^4$ (D) (E) None of these

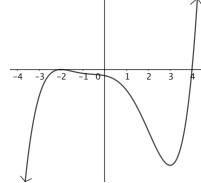
6. Write $\sqrt{16 + 30i}$ in $a + bi$ form with $a, b \geq 0$.

(A) $4 + \sqrt{30}i$ (B) $15 + i$ (C) $4\sqrt{2} + \sqrt{2}i$ (D) $45 + \frac{1}{3}i$ (E)

7. The graph of $f(x) = x^5 - 4x^4 + 3x^2 + 6$ has one root less than 0. On which of the following intervals does it lie?

(A) $(-5, -4)$ (B) $(-4, -3)$ (C) $(-3, -2)$ (D) (E) $(-1, 0)$

8. Find the sum of the absolute values of all solutions to the equation $(4x + 3)(x - 1) = 15$.


(A) $\frac{7}{4}$ (B) (C) 5 (D) 19 (E) None of these

9. Solve for x in the equation $\frac{5}{x+1} - \frac{3}{x^2+1} - \frac{6}{x^4-1} = 0$.

(A) (B) 2.2 (C) 3.1 (D) 4.4 (E) None of these

10. For a general quadratic $f(x) = ax^2 + bx + c$, the sum of its roots is $-\frac{b}{a}$ and the product of its roots is $\frac{c}{a}$. A particular quadratic function for which $a + b + c = -6$ has the sum of its roots equal to -0.5 , and the product equal to -2 . Find $\sqrt{|abc|}$.

(A) (B) $3\sqrt{3}$ (C) $\frac{24\sqrt{15}}{25}$ (D) $\frac{3\sqrt{15}}{25}$ (E) None of these

11. Find the median of the solution set to the equation $(x - \frac{5}{x})^2 - 2x + \frac{10}{x} = 24$.

(A) 0 (B) 1 (C) $\frac{2 - \sqrt{14}}{2}$ (D) $\frac{4 - \sqrt{14}}{2}$ (E) None of these

12. Find the sum of the coefficients of the quotient $(3x^3 - 4x^2y + 5xy^2 + 6y^3) \div (x^2 - 2xy + 3y^2)$.

(A) -7 (B) -1 (C) 3 (D) 5 (E) None of these

13. The graph of $9x^2 - 30xy + 25y^2 = 0$ is best described as

(A) an ellipse (B) a circle (C) a parabola (D) a hyperbola (E) a line

14. How many real numbers are in the solution set for the equation $\sqrt{(x - 1)^2} = 5$?

(A) 0 (B) 1 (C) 2 (D) 6 (E) None of these

15. Let $f(x) = x^2 + 2$, and $g(x)$ be a linear function. Find the x -coordinate of the x -intercept of $g(x)$ if $(f \circ g)(x) = 4x^2 - 28x + 51$.

(A) 3.5 (B) -3.5 (C) 7 (D) -7 (E) None of these

16. A bag contains black and white marbles. You have to draw 6 marbles to guarantee that at least one is white, and you have to draw 11 to guarantee that you get at least one of each color. How many marbles are in the bag?

(A) 11 (B) 12 (C) 15 (D) 17 (E) None of these

17. Find the value of $\log_2(2^1 \cdot 4^2 \cdot 8^3 \cdots 512^9)$.

(A) 90 (B) 285 (C) 2019 (D) 3321 (E) None of these

18. Find $(3 - 2i)^{-2}$ in $a + bi$ form.

(A) $\frac{1}{9} - \frac{1}{4}i$ (B) $\frac{13}{25} + \frac{12}{25}i$ (C) $\frac{5}{169} + \frac{12}{169}i$ (D) $-6 + 4i$ (E) None of these

19. Find the sum of all solutions to the equation $x|x - 1| - 3|2 - 2x| = 0$.

(A) -6 (B) -5 (C) 6 (D) 7 (E) None of these

20. Among all points which lie on the line $y = 5x - 3$, find the value of x which minimizes the value of $\sqrt{x^2 + y^2}$.

(A) 0 (B) $\frac{15}{26}$ (C) $\frac{5}{8}$ (D) $\frac{3}{5}$ (E) None of these

21. The probability of an event E is $\frac{9}{10}$, and the probability of an event F is $\frac{11}{15}$. What is the smallest possible value of the probability of the event $E \cap F$?

(A) 0 (B) $\frac{1}{6}$ (C) $\frac{19}{30}$ (D) $\frac{33}{50}$ (E) None of these

22. Bob has \$4.51 in quarters, dimes, nickles, and pennies. If he has the same number of each coin, how many coins does he have total?

(A) 20 (B) 32 (C) 36 (D) 56 (E) None of these

23. How many four digit numbers with a 5 in the thousands place, and a 4 in the tens place are divisible by 15?

(A) 3 (B) 5 (C) 7 (D) 10 (E) None of these

24. Find the sum of all values of k for which $x^2 + kx + 3 = k$ has only one solution for x .

(A) -4 (B) -3 (C) 0 (D) 6 (E) None of these

25. Solve for x in terms of a , b , and c if $(x + a)(x + b) - c(a + c) = (x - c)(x + c) + ab$.

(A) $\frac{a + c}{bc}$ (B) $\frac{b + c}{ab}$ (C) $\frac{c}{2b}$ (D) $\frac{ab}{b + c}$ (E) $\frac{ac}{a + b}$

26. Find the positive difference between the largest and smallest solutions to the equation

$$x^2 + 3x - 8 = \frac{20}{x^2 + 3x}$$

(A) 7 (B) 11 (C) $\sqrt{17}$ (D) $\sqrt{89}$ (E) None of these

27. Functions f and g are both one-to one where $f(-2) = 5$, $f(-1) = 3$, $f(0) = 6$, $f(1) = -5$, $f(2) = 4$, and $g(-2) = 0$, $g(-1) = 7$, $g(0) = 3$, $g(1) = 2$, $g(2) = -1$. Find the value of $(f \circ g^{-1})(2)$.

(A) -5 (B) 3 (C) 4 (D) 6 (E) None of these

28. The expression $(x^2 + 2x + 1)^5$ is multiplied out completely to obtain a polynomial $p(x)$. Find the sum of the coefficients of $p(x)$.

(A) 34 (B) 45 (C) 128 (D) 1024 (E) None of these

29. Let $\phi(n)$ represent the number of positive integers k less than n with $\gcd(n, k) = 1$. Find $\phi(15)$.

(A) 8 (B) 10 (C) 12 (D) 14 (E) None of these

30. Let $f(x) = \frac{x+2}{x-4}$. Find the vertical asymptote of the inverse function $f^{-1}(x)$.

(A) $x = -2$ (B) $x = -1$ (C) $x = -\frac{1}{2}$ (D) $x = 1$ (E) None of these

31. Find the sum of all values of k such that $x = 14$ is a solution to $6x^2 = 11kx + 7k^2$.

(A) -22 (B) $\frac{77}{3}$ (C) $\frac{19}{7}$ (D) 16 (E) None of these

32. A palindrome is a string that reads the same forwards and backwards. For example, 12421 is a palindrome. How many palindromes are there between 10,000 and 99,999 inclusive?

(A) 31 (B) 48 (C) 900 (D) 81000 (E) None of these

33. Find the slope of the line through the vertex of the parabola given by $y = x^2 - 4x + 5$ and the center of the circle given by $(x + 1)^2 + (y - 3)^2 = 9$.

(A) $-\frac{2}{3}$ (B) $-\frac{20}{3}$ (C) 4 (D) -14 (E) None of these

34. Suppose $f(x)$ is a cubic polynomial with $f(5) = f(1) = f(-1) = 0$. Define $g(x) = f(7 - x)$. What is the largest value of x for which $g(x) = 0$?

(A) 2 (B) 7 (C) 8 (D) 12 (E) None of these

35. How many pairs (x, y) of positive integer solutions are there to the equation $x^2 - y^2 = 11$?

(A) 0 (B) 1 (C) 2 (D) Infinitely Many (E) None of these

36. Let $f(x)$ be piecewise defined as

$$f(x) = \begin{cases} -x^3 & \text{for } x < -2 \\ x^2 + 4 & \text{for } -2 \leq x \leq 2 \\ x^3 & \text{for } x > 2 \end{cases}$$

Then the function $f(x)$ is

(A) Even (B) Odd (C) Neither even nor odd
 (D) Both even and odd (E) Not enough information

37. Put the numbers $\sqrt{26.3}$, $\frac{2^{11}4^5}{8^6}$, $81^{1/3}$, $\frac{35}{6}$ in order from smallest to largest.

(A) $\sqrt{26.3}$, $\frac{35}{6}$, $81^{1/3}$, $\frac{2^{11}4^5}{8^6}$ (B) $\sqrt{26.3}$, $81^{1/3}$, $\frac{2^{11}4^5}{8^6}$, $\frac{35}{6}$
 (C) $\frac{35}{6}$, $\sqrt{26.3}$, $81^{1/3}$, $\frac{2^{11}4^5}{8^6}$ (D) $81^{1/3}$, $\sqrt{26.3}$, $\frac{35}{6}$, $\frac{2^{11}4^5}{8^6}$ (E) None of these

38. Find the product of all solutions to the equation $4^x(8^{x^2}) = 64(2^{x^3})$.

(A) -6 (B) -1 (C) 0 (D) 1 (E) None of these

39. Find the largest solution to the equation $x^2 - 5x + 2\sqrt{x^2 - 5x + 3} = 5$.

(A) $\frac{5 + \sqrt{11}}{2}$ (B) $\frac{5 + \sqrt{29}}{2}$ (C) $\frac{5 + \sqrt{53}}{2}$ (D) $\frac{5 + \sqrt{77}}{2}$ (E) None of these

40. Find the 2019th term of the geometric progression whose first, second, and third terms are $\sqrt[3]{9}$, $3\sqrt[3]{3}$, and 9.

(A) 3^{673} (B) 3^{1346} (C) 3^{2019} (D) 3^{2692} (E) None of these

41. An open tin box with a square base is constructed by cutting a square of side length 4 from each corner of a flat, square piece of tin, and bending up the sides. If instead cutting squares of side length 2 would decrease the volume by 178 cubic inches, find the area in square inches of the original flat, square piece of tin.

(A) 117 (B) 201 (C) 441 (D) 529 (E) None of these

42. Define an operation \boxtimes on two real numbers x and y as $x \boxtimes y = x^2y - xy^2$. Find the value of $3 \boxtimes -2$.

(A) -54 (B) -30 (C) -24 (D) -6 (E) None of these

43. Find the sum of the sequence of numbers $1, 2, 4, 5, 7, 8, 10, 11, \dots, 176, 178, 179$.

(A) 10,740 (B) 10,800 (C) 14,340 (D) 16,110 (E) None of these

44. If $f(x) = 9^x$, then $f(x+1) - f(x)$ equals:

(A) 8 (B) 9 (C) 8f(x) (D) $9f(x)$ (E) None of these

45. Find the number of solutions (x, y) to the system of equations

$$\begin{cases} 3y^2 = xy \\ 2x^2 + xy - 84 = 0 \end{cases}$$

(A) 1 (B) 2 (C) 3 (D) 4 (E) None of these

46. If $x^2 - 5x + 6 < 0$, then the value $y = x^2 + 5x + 6$ takes on all values in the interval

(A) (20, 30) (B) (2, 72) (C) $(-\infty, 0)$ (D) $(0, \infty)$ (E) None of these

47. Find the sum of all real solutions to the equation $(x^2 + 7x + 11)^{x^2+4x-12} = 1$.

(A) -18 (B) -15 (C) -11 (D) -4 (E) None of these

48. For how many integer values of x will the rational expression $\frac{x^2 + 25}{x + 5}$ simplify to an integer?

(A) 2 (B) 6 (C) 12 (D) Infinitely many (E) None of these

49. Find the sum of the values A and B for which the following equation is true for all x :

$$24x + 45 = A(2x + 3) + B(4x + 5)$$

(A) 8 (B) 21 (C) 45 (D) 69 (E) None of these

50. For a particular weighted die, the probabilities of rolling 1, 2, 3, 4, 5, and 6 are in the ratio of 1:1:2:3:5:8. What is the probability that in a single roll you roll an odd number?

(A) 2
5 (B) $\frac{1}{2}$ (C) $\frac{2}{3}$ (D) $\frac{1}{4}$ (E) None of these