

Alabama Statewide Math Contest - Round 4

Division 2

University of Alabama at Birmingham

April 6, 2019

Scoring

0:00 - 0:30 10 points

0:31 - 1:00 8 points

1:01 - 1:30 6 points

1:31 - 2:00 4 points

If the first person to answer is correct, they receive
2 Bonus Points.

Rules

1. Answers must be in answer box provided to be counted. Units such as cm, in, etc. are **not** necessary.
2. Fractions must be reduced. Improper fractions are acceptable.
3. The numbers π and e must be left as such.
4. Complex numbers must be put into $a + bi$ form.

Rules

5. Answers with radicals must be simplified. Denominators must be rationalized.
6. Exponents should be positive.
7. Answers involving trigonometric functions should be simplified as much as possible.
8. $\log(x)$ means $\log_{10}(x)$ and $\ln(x)$ means $\log_e(x)$.
9. The time limit for **all** problems is 2 minutes.

Sample Problem # 1

Sample Problem

RESET

:

Solve for x in the equation

$$x^2 - 6x - 3 = 0$$

Sample Problem

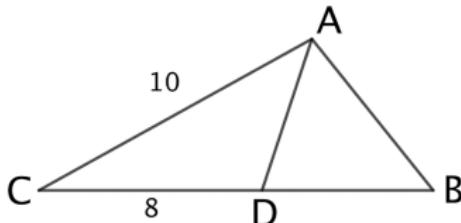
Answer:

Sample Problem

Answer: $3 + 2\sqrt{3}$, and $3 - 2\sqrt{3}$.

Round 4

Geometry


Geometry Question # 1

Geometry Question # 1

RESET

:

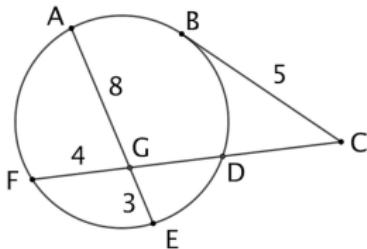
In the figure below, $AC = 10$, $CD = 8$, and $\angle CAD \cong \angle ABC$. Find the length of \overline{BD} .

Geometry Question # 1

Answer:

Geometry Question # 1

Answer: 4.5


Geometry Question # 2

Geometry Question # 2

RESET

:

In the figure below, points A , B , D , E , and F are on the circle, \overleftrightarrow{BC} is tangent to the circle at B with $BC = 5$, \overline{CF} is a secant line, and \overline{AE} and \overline{DF} are chords intersecting at G with $AG = 8$, $FG = 4$ and $GE = 3$. Find CD .

Geometry Question # 2

Answer:

Geometry Question # 2

Answer: $5\sqrt{2} - 5$

Round 4

Algebra II & Trig

Algebra II & Trig Question # 3

Algebra II & Trig Question # 3

RESET

:

Let $f^{-1}(x) = \frac{x^3 - 3}{5x^2 + 1}$. Find the y -intercept of the function $f(x)$.

Algebra II & Trig Question # 3

Answer:

Algebra II & Trig Question # 3

Answer: $\sqrt[3]{3}$

Algebra II & Trig Question # 4

Algebra II & Trig Question # 4

RESET :

How many zeros are at the end of $43!$?

Algebra II & Trig Question # 4

Answer:

Algebra II & Trig Question # 4

Answer: 9

Round 4

Comprehensive Part 1

Comprehensive Part 1

Question # 5

Comprehensive Part 1 Question # 5

RESET :

The surface area of a sphere is 16π . What is the height of the shortest cylinder in which the sphere could be contained?

Comprehensive Part 1 Question # 5

Answer:

Comprehensive Part 1 Question # 5

Answer: 4

Comprehensive Part 1

Question # 6

Comprehensive Part 1 Question # 6

RESET :

Find the value of $\log_{\sqrt{2}} 32$.

Comprehensive Part 1 Question # 6

Answer:

Comprehensive Part 1 Question # 6

Answer: 10

Round 4

Comprehensive Part 2

Comprehensive Part 2

Question # 7

Comprehensive Part 2 Question # 7

RESET :

If $3 - \sqrt{5}$ is one root of the quadratic function $f(x) = x^2 + bx + c$, where b and c are integers, find $b + c$.

Comprehensive Part 2 Question # 7

Answer:

Comprehensive Part 2 Question # 7

Answer: -2

Comprehensive Part 2

Question # 8

Comprehensive Part 2 Question # 8

RESET

:

Find the value of $\frac{71^2 - 29^2}{55^2 - 45^2}$.

Comprehensive Part 2 Question # 8

Answer:

Comprehensive Part 2 Question # 8

Answer: 4.2

Round 4

Team

Team Question # 9

Team Question # 9

RESET :

How many distinct arrangements are there of the letters
STATEMATH? You should provide your answer as an integer.

Team Question # 9

Answer:

Team Question # 9

Answer: 30,240

Team Question # 10

Team Question # 10

RESET

:

If $x - \frac{1}{x} = 2\sqrt{3}$, find the value of $\left(x^2 - \frac{1}{x^2}\right)^2$.

Team Question # 10

Answer:

Team Question # 10

Answer: 192

End of Round 4